
A P P L I C A T I O N S
A W H I T E P A P E R S E R I E S

Six Steps to Migration Project Success

MANY ORGANIZATIONS ARE ADOPTING MIGRATION

AS A STRATEGY TO RESOLVE THEIR BUSINESS

AND IT CHALLENGES. THE GOAL OF THIS WHITE

PAPER IS TO PROVIDE BUSINESSES WITH THE

SIX KEY STEPS TO SUCCEED WHEN EMBARKING ON

A MIGRATION PROJECT.

Today’s organizations are faced with many challenges
in their business environments. Legacy, outdated information
technology (IT) systems and changing business processes are among
these major challenges as companies address legacy system inflexibility, agility, lack

of scalability, lack of wider data access, shortage of skills, high cost of maintenance

and unreliability. Couple this with continually changing technologies, and

organizations are faced with the need to assess these new technologies and adapt

their infrastructures and applications to leverage those technologies.

EXECUTIVE SUMMARY

WHY MIGRATE

DETERMINE A MIGRATION STRATEGY
• WHAT CAN BE MIGRATED?

• MIGRATION STRATEGIES TO CONSIDER

A MIGRATION ROADMAP
• MIGRATION: A SIX-STEP PROCESS

• STEP 1: ASSESS THE APPLICATION FOR MIGRATION

• STEP 2: PREPARE THE APPLICATION FOR MIGRATION

• STEP 3: MIGRATE THE APPLICATION

• STEP 4: PERFORM POST-MIGRATION CHANGES

• STEP 5: TEST THE APPLICATION

• STEP 6: POST-MIGRATION SUPPORT

MIGRATION BEST PRACTICE CHECKLIST

CONCLUSION

© 2 0 0 6 S Y N T E L , I N C .

1

2

3

4

5

6

Six Steps to Migration Project Success

1.

EXECUTIVE SUMMARY

In the quest to address these issues and drive
business forward, enterprises are proactively seeking
strategies to insure that success. To that end, many
organizations are adopting migration as a strategy
to resolve their business and IT challenges.
However, while they are sold on the idea of migra-
tion for its significant benefits, enterprises are
uncertain how to begin. The goal of this white
paper is to provide businesses with the understanding
to select a migration strategy as well as six key
steps to succeed when embarking on a migration
project. The six steps are:

• Application assessment
• Application preparation
• Application migration
• Post-migration changes
• Application testing
• Post-migration support

The intended audience of this white paper is CIOs,
IT executives, system integrators, and others who
are considering migration as a solution to their
business challenges.

2.
WHY MIGRATE?

Prior to arriving at the decision to migrate, the
initial approach to a successful project is to identify
why the process should be considered at all.
This section discusses why a business should
consider migration.

Older IT systems—legacy systems such as main-
frames and COBOL-based software—are difficult
to integrate with newer technologies. Complex

mainframe applications are unable to keep pace
with, and respond to, today's dynamic business
demands. This presents several issues, including:

• Increased maintenance costs of current
IT environment

• Limited resources with specialized skill sets
• Lack of interoperability among

disparate systems
• Lack of scalability and functionality

in the current system
• Lack of agility to incorporate new

features rapidly

Migration sets the stage as a beneficial opportunity
to move these old mission-critical applications into
the 21st century and resolve these issues.

MIGRATION ENHANCES AND

PROTECTS BUSINESS INVESTMENTS

Migration enhances and protects the long-term
investment in an organization’s software
infrastructure and effectively reduces the total cost
of ownership (TCO). Performance benchmarking
ensures that migrated applications perform better
than the old applications, resulting in increased
scalability, simplified maintenance, and reduced
costs. Development efforts are improved through
migration-specific tool creation and use, achieving
faster time to market.

MIGRATION IMPROVES APPLICATIONS

Migration enables the rejuvenation of existing
business systems and leverages application use,
offering opportunities that current and future
technologies provide. For example, by adopting
new service-oriented solutions such as Service
Oriented Architecture (SOA), the interfaces of
current applications can be updated. The business
processes within the applications are represented as
reusable components using standards like Web
services. New applications can utilize these services,
thereby extending their life.

Migration enhances and protects the long-term
investment in an organization’s software infrastructure

and effectively reduces the total cost of ownership (TCO).

TYPES OF

LANGUAGE/CODE

MIGRATIONS

• VB OR ASP TO VB.NET

• VB TO C# .NET

• C OR C++ TO .NET

• C OR C++ TO J2EE

• VB/ASP TO J2EE

• POWERBUILDER TO J2EE

• POWERBUILDER TO .NET

• COBOL TO .NET

• COBOL TO J2EE

• RPG TO .NET

• RPG TO J2EE

• DELPHI TO C#

TYPES OF USER

INTERFACE

MIGRATIONS

• LEGACY CHARACTER-

BASED UI TO GRAPHICAL

USER INTERFACE (GUI)

• EX-WINDOWS-BASED UI

ON UNIX MACHINES TO

WINDOWS-BASED UI

Today, Web enabling of legacy applications and
data is the goal of many companies, who look
forward to leveraging their legacy data assets
through migration to a web-based communications
model. Web-enabling an application or augmenting
an existing Web application provides advanced
features such as state management, data access,
traceability, and improved application performance.

Migration also enhances the new operating
environment. Software assets are consolidated and
applications are brought onto a single development
platform, resulting in improved system integration,
performance, scalability, productivity, integration,
reliability, security, and extensibility. In addition,
reduced cost overheads are realized by eliminating
the need to maintain multiple platforms.

3.
DETERMINE A MIGRATION

STRATEGY

WHAT CAN BE MIGRATED?

Migration can be instituted across of range of tech-
nology classes, including the following (see sidebars):

• Language or code migrations
• Operating system migrations
• Data migrations
• User interface (UI) migrations
• Architecture migrations, including migration

to object-oriented programming (OOP)

As a result, enterprises can perform migrations
whenever a greatly improved infrastructure is desired,
including programming languages, operating systems,
data, architecture, or any combination of these.

MIGRATION STRATEGIES

TO CONSIDER

The next step is to consider the strategies available
for achieving migration. We will take a look at
complete migration, iterative migration, limited
migration, vertical migration, and horizontal
migration. Organizations determine which of these
strategies to use based on factors such as system
qualities, manageability, training, and cost. 1

Complete migration

In complete migration, all of the components in the
application are migrated as a whole. This strategy
does not allow for intermediate validation of the
migration process or the business rules. The only way

to know if the application is suitable for the business
requirements is to evaluate it once the migration is
completed. Complete migration requires significant
effort and is potentially expensive and risky.

This strategy does enable immediate enhancement
with new and added functionality. For example,
VB 6.0 application functionality is improved when
migrated to the .NET environment. Directly
integrated into their new .NET environment, these
applications gain new versatility, and if deployed on
new hardware or new Windows operating systems,
will not require further migration or recompilation.

Complete migration is an expensive strategy, but
is also the most desirable strategy to adopt since it
provides application adaptability to future needs.
However, a comprehensive assessment of the appli-
cation is necessary prior to opting for complete
migration; this is discussed in section 4 of this paper.

Iterative migration

An iterative migration strategy allows for a more
controlled migration process since the application
is migrated component-by-component, with each
newly migrated component rolled out as a phase.
This strategy is only feasible if the existing application
is composed of distinct components. Interoperability
techniques are key, as the migrated and un-migrated
components must function together. Iterative
migrations provide an acceptable alternative to a
complete migration, and are often the option for
a large-scale legacy application migration.

With this strategy, there is greater control over the
cost and progress of the entire migration project.
Each phased rollout, or iteration, minimizes risk
since the application is returned to a stable produc-
tion-quality state. Iterative migration also allows
the flexibility to migrate only certain portions of the
application that have immediate relevance to the
business. Improved performance and scalability are
immediately realized in the migrated components.

Limited migration

Limited migration is different from the iterative
migration process in that only a component of the
application is migrated. The migrated portion is then
modified to interoperate with the un-migrated part
of the application. Interoperability is the key issue in
this type of migration. A business may not need to
migrate the entire application, so this type of migration
allows an organization to port only the components
of the application that are actually required.

Vertical migration

Vertical migration differs from the other migrations
in that the process is performed tier-by-tier. Vertical

TYPES OF

OPERATING SYSTEM

MIGRATIONS

• DOS TO WINDOWS

• UNIX (AIX, SOLARIS,

HP-UX) TO WINDOWS

• WINDOWS TO LINUX

• UNIX TO LINUX

• DG UNIX TO IBM AIX

• LEGACY MAINFRAME

TO UNIX

• MAINFRAME TO

WINDOWS

• C TO C TO UNISYS, UNIX,

INFORMIX 4GL

TYPES OF

ARCHITECTURE

MIGRATIONS

• LEGACY TO WEB

ENABLEMENT

• CLIENT SERVER

TO N-TIER

• CLIENT SERVER TO

WEB SERVICES

• CLIENT SERVER TO SOA

• MIGRATIONS STRUC-

TURED TO OOPS

(OBJECT-ORIENTED

PROGRAMMING,

SYSTEMS)

TYPES OF DATA

MIGRATIONS

• SYBASE TO ORACLE

• SYBASE TO MS SQL

SERVER 2000

• MS SQL SERVER TO

ORACLE

• DB2 TO MS SQL SERVER

• DB2 TO ORACLE

• LEGACY FILE-BASED

SYSTEM TO DB2

• SQL SERVER 6.5 TO

SQL SERVER 2000

migration involves isolating and replacing a portion
of an application through all n-tiers. The developer
determines which component of an application has
the least interaction with the other components and
performs the migration. The migration is then com-
pleted on all tiers for a particular module prior to
proceeding to the next module.

This strategy is advantageous when portions of an
application are well isolated from other portions of
the same application. In these instances, the isolated
components share little state information with the
rest of the application and can undergo easy migra-
tion with minimal impact on the rest of the system.

Vertical migration is also an effective option when
ActiveX Data Objects (ADO) recordsets are used
between tiers. Many applications pass disconnected
ADO record sets from the data and business tiers to
the presentation tier. They then iterate through the
recordsets and generate HTML tables. This type of
application is well suited to a vertical migration
because migrating vertically minimizes the work
involved in achieving interoperability with ADO.

Horizontal migration

Horizontal migration involves replacing an entire
tier of an application without immediately migrat-
ing the other tiers. For example, a developer may
choose to initially replace the ASP code within a
Web-based presentation tier or replace the COM
code within the middle tier as the initial migration
step. For a business migrating to the .NET
environment, the migration is performed a single
tier at a time, taking advantage of the features of
the .NET framework specific to a particular tier. In
this instance, no application code is modified and no
operations are affected on another application tier.

Horizontal migration is beneficial for infrastructures
containing large numbers of servers, large amounts
of shared code, heavy ASP application or session
state use, and complex middle tiers.

4.

A MIGRATION ROADMAP

MIGRATION: A SIX-STEP PROCESS

The actual migration process is divided into six
distinct phases: application assessment, application
preparation, application migration, post-migration
changes, and application testing (see Figure 1).

STEP 1: ASSESS THE APPLICATION

FOR MIGRATION

Once a business has determined that a migration is
a viable solution, the first step is to ascertain which
current applications continue to fulfill current
business needs. Companies that omit this assessment
process delay the inevitable need to retain or
eliminate certain applications. This prolongs the
duration of a project and reduces many of the key
benefits of migration, such as improved and more
efficient business processes.

In determining the feasibility of current applications,
businesses need to examine several decision drivers.
These drivers include project priorities and goals,
application business value, development environment
and resource skills, application complexity and
architecture, and quality assurance. To determine
the application’s value to business, the following
queries need to be answered:

• What functionality does the application
possess that other applications or third-party
tools cannot reproduce?

• What types of data and data transmission
protocols does the application support?

• What are the application’s basic input and
output types, different interface points, and
external dependencies?

Figure 1: The Six-Step Migration Process

1 2 3 4 5 6
APPLICATION

ASSESSMENT

APPLICATION

PREPARATION

APPLICATION

MIGRATION

POST-

MIGRATION

CHANGES

APPLICATION

TESTING

POST-

MIGRATION

SUPPORT

• Does the application handle legacy file for-
mats or high value business transactions?

• How would removal of the application
impact the organization?

• What is the current TCO for the application?
Would TCO improve if the application was
ported to the new environment?

The next step in the assessment establishes the appli-
cation’s code quality in terms of design and source
code. This step helps the migration team understand
the code complexity and, in turn, helps determine the
cost, effort, and schedule for migration. In addition
to assessing code quality, other metrics for this stage
of the assessment include examining the development
environment and developer skill sets.

To determine the application's code quality, the
migration team establishes the application’s size,
usage, complexity, dependencies, and overall stability.
The following are important queries to consider:

• What is the application’s size? How many
lines of code, forms, user controls, modules,
classes, and data source types exist?

• What are the application’s functions,
properties, and types?

• How complex is the application? What
application features are not supported,
resulting in a potential manual migration?

• Does the application depend on other tools
or use an internal mapping that generates
internal functional dependencies?

• Is the application currently undergoing
enhancements or code changes?

The final parameters in the application assessment
examine the development team's skills and the
development environment. This helps determine if
the migration adheres to estimates in terms of effort
and schedule. Familiarity with the code base and
new environment are essential to performing a
successful migration.

In the event the migration team is unfamiliar with
the application, the extra time that would be
required to gain familiarity with the code base needs
to be factored in during estimation. Any lack of code
level knowledge, insufficient documentation, and
lack of development skills in the new environment
increase the risks involved in a migration.

STEP 2: PREPARE THE APPLICATION

FOR MIGRATION

Once the assessment is completed, the second step
prepares the application for migration. Three main

initial conditions are required before migration
commences:

• Provide all the relevant application
documents and baselined source code to
the migration team

• Supply functional experts to the migration
team for accurate understanding of
the project

• Provide application source code that has not
undergone separate enhancements as the
migration begins

With these conditions met, the application preparation
phase begins. The entire application is rebuilt in the
parent environment from the given source code. The
migration team then executes it and runs the appli-
cation test cases to determine that the application
source code provided is the correct version for
migration. With the correct source code version
established, developers proceed to the migration.

STEP 3: MIGRATE THE APPLICATION

In the actual migration process, the prepared
application is migrated to the new environment using
migration tools developed specifically for this purpose.
Migration tools provide many benefits, among them
supplying the migration team with the ability to:

• Consider resource-consuming elements,
constructs, and features

• Identify incompatible porting issues in the
application’s code, build, and production
environment

• Remove dead code and obtain recommenda-
tions for improved coding style

• Analyze application components and
component relationships

• Shorten migration timeframes by eliminat-
ing manual rewriting of unsupported code

• Simplify the migration process via
migration wizards

With the use of a migration tool, an upgrade report is
generated which will identify what application features
are not upgraded automatically; these result in the
need for manual migrations. This is accomplished in
the next phase of the migration process.

STEP 4: PERFORM POST-

MIGRATION CHANGES

Some applications simply cannot be migrated
automatically and may require significant manual
work. Based on the report findings from the prior step
and the desired functionality in the new environment,
the developer will need to change the code in the new

For most organi-
zations today,
waiting to create
a migration
strategy is not a
viable option.
Current business
and IT challenges
—outdated IT
systems and
changing business
processes—
require proactive
resolution.

environment. The objective is to write code for the
new platform to obtain the same functionality in the
migrated code as found in the original application.

Common situations that necessitate manual
work are:

• Applications unable to update to their most
current version prior to migration (e.g.,
VB 5.0 or earlier applications upgraded to
VB 6.0 before migration to VB.NET)

• Certain features not upgraded automatically
(e.g., DDE, OLE, DAO, and RDO data
bindings in VB 6.0)

• Distributed n-tier applications with several
layers of objects communicating through COM

• Web applications using DHTML,
Web Classes, or ActiveX documents

• Projects using ActiveX controls or
ActiveX DLLs

STEP 5: TEST THE APPLICATION

In this final phase, the newly migrated application
is subjected to rigorous testing using the same test
cases applied earlier when validating the source
code provided. Apart from functional testing,
stress, volume, and load tests are carried out to
ensure scalability and performance levels are
achieved. Fine tuning and/or optimization is
conducted after each round of testing to achieve
the desired performance levels. Following successful
testing, the application is released for production.
Alternatively, further enhancements are executed
based on the business needs for the application.

STEP 6: POST-MIGRATION

SUPPORT

Once the migrated application is deployed, additional
business and user needs may be identified, requiring
technical team, developer, and/or system support
intervention. Issues may involve system configuration
or optimization, or the application configuration
parameters may require fine tuning. Ensuring close
attention to this final phase and leveraging the
knowledge capital of migration team members during
this phase reduces risks during the field testing.
It is an essential step to ensure mission critical
applications operate smoothly.

5.
MIGRATION BEST PRACTICE

CHECKLIST

The migration best practice checklist below
provides an at-a-glance overview of the steps
required to launch and drive a migration initiative.

6.
CONCLUSION

For most organizations today, waiting to create a
migration strategy is not a viable option. Current
business and IT challenges—outdated IT systems
and changing business processes—require proactive
resolution. By empowering the rejuvenation of
existing business systems and application uses,
migration offers opportunities that both current
and future technologies provide. Companies that
carefully embrace and incorporate the six strategic
steps outlined in this paper leverage the power of
migration and drive the changes that equate to
business success, now and in the future.

The Migration Best Practice Checklist

❑ Establish costs and benefits of the migration in advance

❑ Evaluate current resources

❑ Define the scope of the migration

❑ Start with simple projects initially

❑ Use applications best suited for the current operating environment “as is”

❑ Understand how the application is going to be modified

❑ Analyze the current application

❑ Ensure a complete understanding of the migration tool that will be used

❑ Prepare the code being migrated prior to the actual migration

❑ Upgrade module-by-module

❑ Test each module as it is being upgraded before continuing migration

❑ Review the upgrade report generated by the migration tool

❑ Use stored procedures as much as possible

❑ Use tools like source code analyzers and compatibility test tools to
identity issues in advance

❑ Define technical changes needed due to migration

❑ Write new test cases for the migrated applications to gauge existing
functionality along with performance and scalability tests

References

1 Mainframe Migration
Alliance: Top 5 reasons
cited by mainframe
customers to MMA,
www.mainframemigration.org.

SYNTEL:about

v i s i t S y n t e l ’ s w e b s i t e a t w w w . s y n t e l i n c . c o m

SYNTEL
525 E. Big Beaver, Third Floor
Troy, MI 48083
phone 248.619.3503
info@syntelinc.com

Syntel provides custom outsourcing solutions to Global 2000

corporations. Founded in 1980, Syntel's portfolio of services

includes BPO, complex application development, management,

product engineering, and enterprise application integration

services, as well as e-Business development and integration,

wireless solutions, data warehousing, CRM, and ERP.

We maximize outsourcing investments through an onsite/off-

shore Global Delivery Service, increasing the efficiency of how

complex projects are delivered. Syntel's global approach also

makes a significant and positive impact on speed-to-market,

budgets, and quality. We deploy a custom delivery model that

is a seamless extension of your organization to fit your business

goals and a proprietary knowledge transfer methodology to

guarantee knowledge continuity.

